

CBSE Std. IX MATHEMATICS

& Natural Numbers

All counting numbers are called natural numbers. If N is the set of natural numbers, then $N = \{1, 2, 3, 4, 5, \dots \infty\}$

>Important Notes

- 1 is smallest natural number
- ii) Adding 1 to each natural number, we get next natural number.

Whole Numbers

Natural numbers including zero represent the set of whole numbers. It is denoted by the symbol W.

$$W = \{0, 1, 2, 3, 4, 5, \dots \infty\}$$

>Important Note

- i) 0 is smallest whole number
- ii) Every natural number is whole number but every whole number is not natural number

Ŕ Integers

All natural numbers, (positive and negative) and 0, together form the set Z or I of all integers.

The set integers
$$Z = \{-\infty - 3, -2, -1, 0, 1, 2, 3, \cdots + \infty\}$$

$$Z = Z^+ \cup \{0\} \cup Z^-$$

$$Z^+ = \{1, 2, 3, 4, 5, 6, \dots, \infty\} = N$$
 is the set of all positive integers.

$$Z^- = \{-1, -2, -3, -4, \dots, \infty\}$$
 is the set of all negative integers.

Important Notes

It has neither the greatest or least element

Rational Numbers

Any number that can be expressed in the form $\frac{p}{q}$ (where $q \neq 0$ and p, q are integers) is called a rational number.

Thus
$$Q = \left\{ \frac{a}{b} \mid a, b \in z \text{ and } b \neq 0 \right\}$$

Example
$$\frac{4}{1}, \frac{5}{1}, \frac{0}{1}$$
 etc., $0.333 \dots = \frac{1}{3}, 0.2 = \frac{2}{10} = \frac{1}{5}$

- ❖ All natural numbers, whole numbers and integers are rational numbers.
- **...** Every terminating decimal is a rational number.
- * Every recurring decimal (A non-terminating repeating decimal is called a recurring decimal.) is a rational number.

>Important Notes

i) There exist infinite number of rational numbers between any two rational numbers. This property is known as the density of rational numbers.

PROPERTIES:

- 1. (i) The sum of two rational numbers is always rational. [Closure Property for addition]
 - (ii) The product of two rational numbers is always rational. [Closure property for multiplication]
- 2. For any two rational numbers $\frac{a}{b}$ and $\frac{c}{d}$ we have
 - (i) $\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}$ [commutative law of addition]
 - (ii) $\frac{a}{b} \times \frac{c}{d} = \frac{c}{d} \times \frac{a}{b}$ [commutative law of multiplication]
- 3. For any three rational numbers $\frac{a}{b}$, $\frac{c}{d}$, $\frac{e}{f}$ we have,
 - (i) $\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right)$ [Associative law of addition]
 - (ii) $\left(\frac{a}{b} \times \frac{c}{d}\right) \times \frac{e}{f} = \frac{a}{b} \times \left(\frac{c}{d} \times \frac{e}{f}\right)$ [Associative law of multiplication]
- 4. The difference of any two rational numbers is always rational.
- 5. If $\frac{a}{b}$ is a non-zero rational, then $\frac{b}{a}$ is called its reciprocal and $\frac{a}{b} \times \frac{b}{a} = 1$
- Finding rational numbers between two numbers :
- (A) Method I:

Find a rational number between a and b then, $\frac{a+b}{2}$ is a rational number lying between a and b.

E.g. Find a rational number between 2 and 7

Sol. Here
$$a = 2$$
, $b = 7$

then, a rational number between 2 and 7 $\frac{2+7}{2} = \frac{9}{2}$

(B) Method II:

Find n rational number between a and b (when a and b is non fraction number)then we use formula.

$$\frac{a(n+1)}{n+1}, \frac{b(n+1)}{n+1}$$

E.g. Find 3 numbers between 4 and 5.

Sol. Here a = 4, b = 5, n = 3

then,
$$\frac{a(n+1)}{n+1} = \frac{4(3+1)}{3+1} = \frac{16}{4}$$
. Again $\frac{b(n+1)}{n+1} = \frac{5(3+1)}{3+1} = \frac{20}{4}$

$$\therefore \frac{16}{4} \left[\frac{17}{4}, \frac{18}{4}, \frac{19}{4} \right] \frac{20}{4}$$

Hence rational numbers between 4 and 5 are $\frac{17}{4}$, $\frac{18}{4}$, $\frac{19}{4}$.

(C) Method III:

Find n rational number between a and b (when a and b is fraction Number) then we use formula

$$d = \frac{(b-a)}{n+1}$$

then n rational number lying between a and b are (a + d), (a + 2d), (a + 3d)....(a + nd)

Remark: a = First Rational Number, b = Second Rational Number, n = No. of Rational Number.

E.g. Find 3 rational numbers between $\frac{7}{5}, \frac{9}{5}$.

Sol. Here
$$a = \frac{7}{5}$$
, $b = \frac{9}{5}$, $n = 3$

then
$$d = \left(\frac{b-a}{n+1}\right) = \frac{\frac{9}{5} - \frac{7}{5}}{3+1} = \frac{\frac{2}{5}}{4} = \frac{1}{10}$$

 \therefore 3 rational numbers between $\frac{7}{5}$ and $\frac{9}{5}$ are (a+d), (a+2d), (a+3d)

then, 1st rational number =
$$(a+d) = \frac{7}{5} + \frac{1}{10} = \frac{15}{10}$$

2nd rational number =
$$(a+2d) = \frac{7}{5} + \frac{2}{10} = \frac{16}{10}$$

3rd rational number =
$$(a+3d) = \frac{7}{5} + \frac{3}{10} = \frac{17}{10}$$

Hence 3 rational numbers between $\frac{7}{5}$ and $\frac{9}{5}$ are $\frac{14}{10} \left[\frac{15}{10}, \frac{16}{10}, \frac{17}{10} \right] \frac{18}{10}$

Important Notes

NON-TERMINATING REPEATING DECIMAL NUMBERS

It has two types:

(a) Pure recurring decimals:

A decimal in which all the digit after the decimal point are repeated.

E.g.: $0.\overline{3}$, $0.\overline{16}$, $0.\overline{123}$ are pure recurring decimals.

(b) Mixed recurring decimals:

A decimals in which at least one of the digits after the decimal point is not repeated and then some digit or digits are repeated.

E.g. $3.\overline{16}$, $0.\overline{135}$, $0.\overline{2785}$ are mixed recurring decimals.

F

Conversion recurring decimals to the form $\frac{p}{q}$

Method:

$$\left(\frac{p}{q}\right) form = \frac{\text{(Complete numbers)} - \text{(number formed by Nonrepeating digit)}}{\text{No. of 9 as no. of repeating digits after that write no. of 0 as no. of nonrepeating digits.}}$$

Ex. (i)
$$0.\overline{585} = \frac{585 - 0}{999} = \frac{195}{333} = \frac{65}{111}$$

(ii)
$$0.12\overline{3} = \frac{123 - 12}{900} = \frac{111}{900} = \frac{37}{300}$$

(iii)
$$25.6\overline{32} = 25 + \frac{632 - 6}{990} = 25 + \frac{626}{990} = \frac{25 \times 495 + 313}{495} = \frac{12688}{495}$$

(iv)
$$15.7\overline{12} = 15\frac{712 - 7}{990} = 15\frac{705}{990} = 15\frac{141}{198} = 15\frac{47}{66} = \frac{15 \times 66 + 47}{66} = \frac{1037}{66}$$

♥ Irrational Numbers

A number is called irrational number, if it can not be written in the form $\frac{p}{q}$, where p & q are integers and $q \neq 0$. All Non-terminating & Non-repeating decimal numbers are Irrational numbers.

Ex.
$$\sqrt{2}$$
, $\sqrt{5}$, $3\sqrt{2}$, $1+\sqrt{3}$, $\sqrt{3+\sqrt{2}}$, π , etc...

Important Notes

i) The sum and difference of a rational and an irrational number is irrational;

E.g. : 3 is rational and $\sqrt{2}$ is irrational and so $3+\sqrt{2}$, $3-\sqrt{2}$ are irrational.

ii) The sum of two irrationals may be rational or irrational.

E.g.: $\sqrt{3}+1$ and $1-\sqrt{3}$ both are irrational but the sum is rational $(\sqrt{3}+1+1-\sqrt{3}=2)$

iii) Product of an irrational with an irrational is not always irrational

E.g.
$$\sqrt{2} \times \sqrt{2} = \sqrt{4} = 2$$
 a rational number.

$$(1+\sqrt{3})\times\sqrt{2}=\sqrt{2}+\sqrt{6}$$
 a irrational number.

iv) Product of non-zero rational number with an irrational number is always irrational number.

$$\frac{1}{2} \times \sqrt{5} = \frac{\sqrt{5}}{2}$$
 a irrational number.

Concept Illustrator

1. Prove that $\sqrt{2}$ is not rational.

 $\sqrt{2}$ is not an integer)

Since 1 < 2 < 4, hence, $\sqrt{1} < \sqrt{2} < \sqrt{4}$ or $1 < \sqrt{2} < 2$, which shows that $\sqrt{2}$ cannot be an integer. If possible, let us assume, $\sqrt{2}$ is rational. Then we can write, $\sqrt{2} = \frac{p}{q}$...(i) where p and q are positive integers prime to each other *i.e.*, they have no common factor other than 1 and q > 1 (since

Number System CBSE Std. IX MATHEMATICS

Now,
$$\frac{p}{q} = \sqrt{2}$$
 or, $\frac{p^2}{q^2} = 2$ (squaring) or, $\frac{p^2}{2q} = q$ or, $\frac{p^2}{q} = 2q$

By hypothesis, p and q are positive integers prime to each other. Again q > 1. Therefore, $\frac{p^2}{q}$ represents a positive rational number which is not an integer. But 2q represents a positive integer. Therefore, from (1) we get, a positive rational number which is not an integer = a positive integer. Clearly, it is impossible. Hence, our assumption cannot be true i.e., $\sqrt{2} \neq \frac{p}{a}$. In other words, $\sqrt{2}$ is not a rational

2. Show that $\sqrt[3]{4}$ is not a rational number.

Sol. We have 1 < 4 < 8

number (proved)

Whence
$$\sqrt[3]{1} < \sqrt[3]{4} < \sqrt[3]{8}$$
, *i.e.*, $1 < \sqrt[3]{4} < 2$

which shows that $\sqrt[3]{4}$ is not an integer.

If possible, let $\sqrt[3]{4} = \frac{p}{q}$...(i), where p, q are mutually prime integers and q > 1.

Now cubing both sides of (1) we have

$$\frac{p^3}{q^3} = 4$$
 or, $4q^2 = \frac{p^3}{q}$.

Since p, q are prime to each other, so p^3 and q are also prime to each other, i.e., there is no common

factor between p^3 and q. In other words q does not divide p^3 . So $\frac{p^3}{q}$ is not an integer. But $4q^2$ is clearly an integer whence we see that equality (1) does not hold [since L.H.S. of (1) is an integer while R.H.S. of (1) is not an integer]. Consequently, our hypothesis that $\sqrt[3]{4}$ is rational must be wrong. So $\sqrt[3]{4}$ is not a rational number.

3. Find rational value of p so that $\sqrt{p^2 + p + 1}$

Suppose x and p are both rational, so that (x-p) is rational.

Now,
$$x - p = \sqrt{p^2 + p + 1} - p$$

Let x - p = y, where y is rational.

So, from (1) we have

$$y = \sqrt{p^2 + p + 1} - p \Rightarrow y + p = \sqrt{p^2 + p + 1} \Rightarrow y^2 + 2py + p^2 = p^2 + p + 1$$

$$\Rightarrow (2y-1)p = 1 - y^2 \Rightarrow p = \frac{1-y^2}{2y-1} = \frac{y^2-1}{1-2y}$$

So, for $y \neq \frac{1}{2}$, the given expression is rational for all rational values of p, where $p = \frac{y^2 - 1}{1 - 2y}$

♥ Real Numbers

The collection of rational numbers and irrational numbers is called the set of real numbers. If Q is the set of rational numbers and P is the set of irrational numbers then $Q \cap P = \emptyset$ and every real number is either rational or irrational.

Number System CBSE Std. IX MATHEMATICS

N: The set of natural numbers,

W: The set of whole numbers,

Z: The set of Integers,

Q: The set of rationals,

R: The set of Real Numbers.

Important Notes

- i) Two real numbers a and b, either a = b, a > b, or a < b
- ii) The real numbers obey all the laws of algebra that the rational numbers obey.
- iii) The sum, difference and product of two real numbers is real.
- iv) The division of a real number by non-zero real number is real.
- v) Every real number has a negative real number. 0 is its own negative number.
- vi) The sum, difference, product quotient of a rational number and an irrational number is irrational.

Thus,
$$2+\sqrt{3}$$
, $-3+\sqrt{5}$, $\frac{1}{4+\sqrt{2}}$, etc. are irrational numbers.

- vii) The sum, difference, product and quotient of two irrational numbers need not be irrational.
- viii) Between two unequal real numbers there are innumerable real numbers. Many of these are rational and many are irrational

To find a real number between two unequal real numbers :

- i) If a, b are two real numbers, $\frac{a+b}{2}$ is a real number lying between a and b.
- ii) If a, b are two positive real numbers, \sqrt{ab} is an irrational number lying between a and b.
- iii) If a and b are two positive real numbers such that $a \times b$ is not a perfect square of a rational number, \sqrt{ab} is an irrational number lying between a and b.

Example $\sqrt{2 \times 5}$, *i.e.*, $\sqrt{10}$ is an irrational number between 2 and 5 because 2×5 *i.e.*, 10 is not a perfect square of a rational number.

Absulate value of a real number :

The absulate value (or modulus) of a real number a is denoted by |a|, and is defined as

$$|a| = \begin{cases} a, & \text{if } a \ge 0 \\ -a, & \text{if } a < 0 \end{cases}$$

• Representation of numbers of the number line :

Real Numbers:

Draw a line, Mark a point on it which represents 0 (zero). Now on the right hand side of zero (0), mark points at equal intervals of length, as shown below:

These points represent natural numbers 1, 2, 3, ··· respectively. The three dots on number line indicate the continuation of these numbers indefinitely.

Whole Numbers:

This is similar as above, but with the inclusion of 0 in the number line it is as follows:

Integers:

Draw a line, Mark a point on it which represents 0 (zero).

Three dots on either side show the continuation of integers indefinitely on each side.

Rational Numbers:

Rational numbers can be represented by some points on the number line.

Draw a line. Mark a point on it which represents 0 (zero)

Set equal distances on both sides of 0. Each point on the division represents an integer as shown below.

The length between two successive integers is called a unit length.

Let us consider a rational number $\frac{2}{7}$

Divide unit length between 0 and 1 into 7 equal parts; call them sub-divisions.

The point at the line indicating the second sub-division represents $\frac{2}{7}$.

In this way any rational number can be represented on the number line.

◆ Representation of Irrational numbers on the number line :

We use the Pythagorus property of a right angled trangle, according to which, in a right angled tringle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Consider the number line ℓ and a perpendicular line ℓ_1 to it.

Let OA = 1 unit and OP = 1 unit

Let *OAXP* be a square.

$$OX = \sqrt{1^2 + 1^2} = \sqrt{2}$$

Taking O as the centre and OX as the radius

cut the number

line at the point A^1

$$\Rightarrow i.e., OX = OA^1 = \sqrt{2}$$

Concept Illustrator

◆ Representation of Irrational numbers on a number line

To represent $\sqrt{3}$ on the real number line :

$$OC = \sqrt{OP^2 + PC^2}$$

[By Pythagorus theorem]

$$= \sqrt{(\sqrt{2})^2 + (1)^2} = \sqrt{2+1} = \sqrt{3}$$

Then,
$$OC = OQ = \sqrt{3}$$
 unit

Thus, the point Q represent $\sqrt{3}$ on the number line.

To represent $\sqrt{6}$ on the real number line :

$$OC = \sqrt{OP^2 + PC^2}$$

[By Pythagorus theorem]

$$= \sqrt{(\sqrt{2})^2 + (2)^2} = \sqrt{2+4} = \sqrt{6}$$

Then,
$$OC = OQ = \sqrt{6}$$
 unit

To represent $\sqrt{7}$ on the real number line :

$$OD = \sqrt{OQ^2 + DQ^2} = \sqrt{(\sqrt{3})^2 + (2)^2} = \sqrt{3 + 4} = \sqrt{7}$$

Then,
$$OD = OQ = \sqrt{7}$$
 unit

Thus, the point Q represent $\sqrt{7}$ on the number line.

To represent $\sqrt{12}$ on the real number line :

$$\mathbf{OD} = \sqrt{\mathbf{OQ}^2 + \mathbf{DQ}^2}$$

$$=\sqrt{(\sqrt{3})^2+(3)^2}$$

$$=\sqrt{3+9} = \sqrt{12}$$

Then, $OD = OR = \sqrt{12}$ unit

Thus, the point R represent $\sqrt{12}$ on the number line.

♥ Surds

Algebraic irrational numbers are said to be surds. Thus surds are irrational roots of equations with rational coefficients.

Example: $\sqrt{2}$ is a surd, for $\sqrt{2}$ is an irrational root of the equation $x^2 - 2 = 0$, which is an equation with rational coefficients, $\frac{1}{3^3}$ is surd, for it is an irrational root of the equation $x^3 - 3 = 0$; $3 + \sqrt{2}$ is a surd, for it is the root of the equation $x^2 - 6x + 7 = 0$ which is with rational coefficients.

- $\sqrt{3}$ and $2^{\frac{1}{2}}$ are surds of the second order or quadratic surds.
- $\sqrt[3]{4}$, $5^{\frac{2}{3}}$, $x^{\frac{1}{3}}$ are surds of the third order or cubic surds.

Similarly, $\sqrt[4]{7}$, $\sqrt[n]{Q}$ are surds of the 4th and *n*th orders respectively.

Important Notes

i) π , e etc. are not surds. $\sqrt{4}$, $\sqrt[3]{27}$, $\sqrt[4]{\frac{16}{81}}$ are not surds. for $\sqrt{4} = 2$, $\sqrt[3]{27} = 3$, $\sqrt[4]{\frac{16}{81}} = \frac{2}{3}$.

All are rational numbers, but surds are irrational numbers.

- ii) Different surds:
 - a) Simple pure surd: A surd with only one term and without any rational co-efficient is known as a simple pure surd. For example, $\sqrt{3}$, $\sqrt[3]{5}$ etc.
 - b) Simple mixed surd : A surd with only one term and with a rational coefficient is known as a simple mixed surd. For example. $5\sqrt[3]{7}$, $3\sqrt{5}$, etc.
 - c) Compound surd: If surds more than one are connected by '+' or '-' sign, then that quantity is known as a compound surd. For example $\sqrt{3} + \sqrt[3]{5}$, $+\sqrt{5} + \sqrt[4]{5}$, etc.
 - d) Binomial and Trinomial surds: The algebraic sum of two surds or a rational quantity and a surd is said to be a binomial surd $2\sqrt{3} + \sqrt{5}$, $\sqrt{3} + 2\sqrt{2}$, $\sqrt{7} \sqrt{3}$. Thus are binomial surds. Similarly, $\sqrt{5} + \sqrt{3} + \sqrt{2}$, $3 + \sqrt{7} \sqrt{2}$ are trinomial surds.
 - e) Conjugate surd and Complementary surd: In two binomial surds, if the two terms are identical but signs between the surds of opposite nature, one surd is known as conjugate or complementary to the other surd.

Example $3 + \sqrt{5}$ and $3 - \sqrt{5}$ or $\sqrt{x} + \sqrt{y}$ and $\sqrt{x} - \sqrt{y}$

Hence, the product of two conjugate surds is always rational and evidently each is the rationalising factor of the other.

iii) Comparison of Surds:

- a) For equiradical surds $\sqrt[3]{18} > \sqrt[3]{15}$ since 18>15.
- b) For comparison between two surds of different orders we express them to surds of the same order. Thus, to compare between $\sqrt[3]{4}$ and $\sqrt[5]{6}$ we express them to surds of the same order as follows:

Clearly, the orders of the given surds are 3 and 5 respectively and the L.C.M. of 3 and 5 is 15.

Therefore,
$$\sqrt[3]{4} = 4^{\frac{1}{3}} = 4^{\frac{5}{15}} = \sqrt[15]{4^5} = \sqrt[15]{1024}$$
 and $\sqrt[5]{6} = 6^{\frac{1}{5}} = 6^{\frac{3}{15}} = \sqrt[15]{6^3} = \sqrt[15]{216}$

Now, 1024 > 216; therefore, $\sqrt[15]{1024} > \sqrt[15]{216}$ i.e., $\sqrt[3]{4} > \sqrt[5]{6}$

iv) Addition and Subtraction of surds:

To find the sum (or difference) of two or more surds—

- a) express each surd in its simplest mixed form;
- b) then find the sum (or difference) of rational co-efficients of surds.
- c) finally, to get the required sum (or difference) of like surds multiply the result obtained in (b) by the surd-factor of like surds.

The sum (or difference) of unlike surds is expressed in a number of terms by connecting them with plus (+) or minus (-) sign.

E.g.
$$\sqrt{32} - 2\sqrt{18} + 5\sqrt{2} + 2^{\frac{3}{2}}$$

Sol.
$$\sqrt{32} - 2\sqrt{18} + 5\sqrt{2} + 2^{\frac{3}{2}} = \sqrt{16 \times 2} - 2\sqrt{9 \times 2} + 5\sqrt{2} + \sqrt{2^3} = 4\sqrt{2} - 6\sqrt{2} + 5\sqrt{2} + 2\sqrt{2}$$

= $(4 + 5 + 2)\sqrt{2} - 6\sqrt{2} = 11\sqrt{2} - 6\sqrt{2} = (11 - 6)\sqrt{2} = 5\sqrt{2}$

v) Multiplication and division of surds:

The surds of the same order can be multiplied according to the law $\sqrt[n]{x} \times \sqrt[n]{y} = \sqrt[n]{xy}$

Note :

When the surds to be multiplied or divided are not of the same order, they have to be necessarily brought to the same order before the operation is done.

E.g.
$$\sqrt{8} \times 3\sqrt{3} \times 2\sqrt{45} = \sqrt{2^2 \times 2} \times 3\sqrt{3} \times 2\sqrt{3^2 \cdot 5} = 2\sqrt{2} \times 3\sqrt{3} \times 2 \times 3\sqrt{5}$$

= $(2 \times 3 \times 6) \times (\sqrt{2} \times \sqrt{3} \times \sqrt{5}) = 36 \times \sqrt{2 \times 3 \times 5} = 36\sqrt{30}$

E.g.
$$(\sqrt{x}+1) \div (\sqrt{y}+1) = \frac{\sqrt{x}+1}{\sqrt{y}+1} = \frac{(\sqrt{x}+1)(\sqrt{y}-1)}{(\sqrt{y}+1)(\sqrt{y}-1)} = \frac{\sqrt{x}\sqrt{y}+\sqrt{y}-\sqrt{x}-1}{(\sqrt{y})^2-1} = \frac{\sqrt{xy}+\sqrt{y}-\sqrt{x}-1}{y-1}$$

- vi) The method of converting a given surd into a rational number on multiplication by another suitable surd is called **rationalisation of surds**. In this case the multiplying surd is called the raionalising factor of the given surd and conversely.
- $\sqrt{a} + \sqrt{b}$ is rationalizing factor of $\sqrt{a} \sqrt{b}$ and vice versa
- $\sqrt[3]{a} + \sqrt[3]{b}$ is rationalizing factor of $\sqrt[3]{a} \sqrt[3]{b}$
- $\sqrt[3]{a} \sqrt[3]{b}$ is rationalizing factor of $\sqrt[3]{a} + \sqrt[3]{b}$

- Rationalizing factor of $2^{\frac{1}{3}} + 2^{\frac{-1}{3}}$ is $2^{\frac{2}{3}} 1 + 2^{\frac{1}{3}}$
- Rationalizing factor of $2^{\frac{1}{3}} 2^{\frac{-1}{3}}$ is $2^{\frac{2}{3}} + 1 + 2^{\frac{1}{3}}$
- vii) If $a + \sqrt{b} = x + \sqrt{y}$ and a and x are both rationals and \sqrt{b} and \sqrt{y} are both surds then a = x and b = y.
- **viii)** If $a \sqrt{b} = x \sqrt{y}$, then a = x and b = y
- ix) If $a + \sqrt{b} = 0$ (or, $a \sqrt{b} = 0$) then a = 0 and b = 0
- Square Root of Quadratic Surds :
- (a) $\left(\sqrt{x} + \sqrt{y}\right)^2 = \left(\sqrt{x}\right)^2 + \left(\sqrt{y}\right)^2 + 2\sqrt{x} \cdot \sqrt{y} = (x+y) + 2\sqrt{xy}$ $= a + \sqrt{b}$, where a = (x+y) and $\sqrt{b} = 2\sqrt{xy}$
- $\therefore \quad \sqrt{a + \sqrt{b}} = \pm \left(\sqrt{x} + \sqrt{y}\right)$

Thus the square root of $(a + \sqrt{b})$ is either $+(\sqrt{x} + \sqrt{y})$ or $-(\sqrt{x} + \sqrt{y})$

E.g. Find the square roots of $\frac{1}{2}(2+\sqrt{3})$

Sol.
$$= \frac{1}{2}(2+\sqrt{3}) = \frac{1}{4}(4+2\sqrt{3}) = \frac{1}{4}[(\sqrt{3})^2 + 1^2 + 2 \cdot \sqrt{3} \cdot 1] = [\frac{1}{2}(\sqrt{3}+1)]^2$$

- \therefore Square roots are $\pm \frac{1}{2} (\sqrt{3} + 1)$
- **(b)** $(\sqrt{x} + \sqrt{y} + \sqrt{z})^2 = x + y + z + 2\sqrt{xy} + 2\sqrt{yz} + 2\sqrt{zx} = a + \sqrt{b} + \sqrt{c} + \sqrt{d}$ where, a = x + y + z, $\sqrt{b} = 2\sqrt{xy}$, $\sqrt{c} = 2\sqrt{yz}$, $\sqrt{d} = 2\sqrt{zx}$
- $\therefore \quad \sqrt{a + \sqrt{b} + \sqrt{c} + \sqrt{d}} = \pm \left(\sqrt{x} + \sqrt{y} + \sqrt{z}\right)$

Thus the square root of $\left(a + \sqrt{b} + \sqrt{c} + \sqrt{d}\right)$ is either $+\left(\sqrt{x} + \sqrt{y} + \sqrt{z}\right)$ or $-\left(\sqrt{x} + \sqrt{y} + \sqrt{z}\right)$

E.g. Find the square roots of $8 + 2\sqrt{2} - 2\sqrt{5} - 2\sqrt{10}$

Sol. Given exp. =
$$2 + 1 + 5 + 2 \cdot \sqrt{2} \cdot 1 + 2 \cdot (-\sqrt{5}) \cdot 1 + 2 \cdot \sqrt{2} \cdot (-\sqrt{5}) = (\sqrt{2} + 1 - \sqrt{5})^2$$

 \therefore Required square roots are $\pm(\sqrt{2}+1-\sqrt{5})$

Concept Illustrator <

1. Simplify $\frac{\sqrt{2}(2+\sqrt{3})}{\sqrt{3}(\sqrt{3}+1)} - \frac{\sqrt{2}(2-\sqrt{3})}{\sqrt{3}(\sqrt{3}-1)}$

Sol. Three given exp. $\frac{\sqrt{2}(2+\sqrt{3})\times\sqrt{3}(\sqrt{3}-1)}{\sqrt{3}(\sqrt{3}+1)\times\sqrt{3}(\sqrt{3}-1)} - \frac{\sqrt{2}(2-\sqrt{3})\times\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}(\sqrt{3}-1)\times\sqrt{3}(\sqrt{3}+1)}$

$$=\frac{3\sqrt{2}+\sqrt{6}}{3(3-1)}-\frac{3\sqrt{2}-\sqrt{6}}{3(3-1)}=\frac{3\sqrt{2}+\sqrt{6}-3\sqrt{2}+\sqrt{6}}{6}=\frac{2\sqrt{6}}{6}=\frac{\sqrt{6}}{3}$$

2. Rationalise the denominator of the fraction $\frac{\sqrt{a+1} + \sqrt{a-1}}{\sqrt{a+1} - \sqrt{a-1}}$

Sol. The given fraction
$$= \frac{\left(\sqrt{a+1} + \sqrt{a-1}\right)^2}{\left(\sqrt{a+1} - \sqrt{a-1}\right)\left(\sqrt{a+1} + \sqrt{a-1}\right)}$$

$$= \frac{a+1+a-1+2\sqrt{a^2-1}}{(a+1)-(a-1)} = \frac{2a+2\sqrt{a^2-1}}{2} = a+\sqrt{a^2-1}$$

3. If $x = \frac{\sqrt{3}}{2}$, find the value of $\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}$

Sol. The given exp.
$$= \frac{\left(\sqrt{1+x} - \sqrt{1-x}\right)^2}{\left(\sqrt{1+x} + \sqrt{1-x}\right)\left(\sqrt{1+x} - \sqrt{1-x}\right)}$$

$$= \frac{1+x+1-x-2\sqrt{1-x^2}}{\left(\sqrt{1+x}\right)^2 - \left(\sqrt{1-x}\right)^2} = \frac{2-2\sqrt{1-x^2}}{1+x-\left(1-x\right)} = \frac{2\left(1-\sqrt{1-x^2}\right)}{2x}$$

$$= \frac{1 - \sqrt{1 - x^2}}{x} = \frac{1 - \sqrt{1 - \frac{3}{4}}}{\frac{\sqrt{3}}{2}} = \frac{1 - \sqrt{\frac{1}{4}}}{\frac{\sqrt{3}}{2}} = \frac{1 - \frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{3}$$

4. Show that $\sqrt{6} + \sqrt{2} < \sqrt{5} + \sqrt{3}$

Sol.
$$\left(\sqrt{6} + \sqrt{2}\right)^2 = 6 + 2 + 2\sqrt{12} = 8 + 2\sqrt{12}$$
 and $\left(\sqrt{5} + \sqrt{3}\right)^2 = 5 + 3 + 2\sqrt{15} = 8 + 2\sqrt{15}$

$$\because \sqrt{12} < \sqrt{15}$$

$$\therefore 8 + 2\sqrt{12} < 8 + 2\sqrt{15}$$

$$\therefore \quad \sqrt{6} + \sqrt{2} < \sqrt{5} + \sqrt{3}$$

5. If $x = \frac{\sqrt{5} - 1}{\sqrt{5} + 1}$ and $y = \frac{\sqrt{5} + 1}{\sqrt{5} - 1}$, find the value of $\frac{x^2}{y} + \frac{y^2}{x}$

Sol.
$$x + y = \frac{\sqrt{5} - 1}{\sqrt{5} + 1} + \frac{\sqrt{5} + 1}{\sqrt{5} - 1} = \frac{\left(\sqrt{5} - 1\right)^2 + \left(\sqrt{5} + 1\right)^2}{\left(\sqrt{5} + 1\right)\left(\sqrt{5} - 1\right)} = \frac{2(5 + 1)}{5 - 1} = \frac{12}{4} = 3$$

and
$$xy = \frac{\sqrt{5} - 1}{\sqrt{5} + 1} \times \frac{\sqrt{5} + 1}{\sqrt{5} - 1} = 1$$

Given expression
$$=\frac{x^2}{y} + \frac{y^2}{x} = \frac{x^3 + y^3}{xy}$$

$$= \frac{(x+y)^3 - 3xy(x+y)}{xy} = \frac{(3)^3 - 3 \cdot 1 \cdot 3}{1} = \frac{27 - 9}{1} = 18$$

6. If
$$x = 2 + \sqrt{3}$$
 show that $x^3 - 2x^2 - 7x + 2 = 0$

Sol.
$$\Rightarrow$$
 : $x = 2 + \sqrt{3}$: $x - 2 = \sqrt{3}$

or,
$$(x-2)^2 = (\sqrt{3})^2$$
 or, $x^2 - 4x + 4 = 3$

or,
$$x^2 - 4x + 1 = 0$$

L.H.S. $= x^3 - 2x^2 - 7x + 2 = x^3 - 4x^2 + x + 2x^2 - 8x + 2$
 $= x(x^2 - 4x + 1) + 2(x^2 - 4x + 1) = (x^2 - 4x + 1)(x + 2) = 0 \times (x + 2) = 0$ R.H.S. (Proved)

7. If
$$x = 1 + \sqrt{2}$$
 and $ma = 1 + \sqrt{1 - a^2}$ then show that $\frac{a}{2m} (1 + mx) \left(1 + \frac{m}{x} \right) = 1 + \sqrt{2}a$

Sol.
$$x = \sqrt{2} + 1$$
, $\frac{1}{x} = \sqrt{2} - 1 \Rightarrow x + \frac{1}{x} = 2\sqrt{2}$ and $m = \frac{1 + \sqrt{1 - a^2}}{a}$

$$\frac{1}{m} = \frac{1 - \sqrt{1 - a^2}}{a} \Rightarrow m + \frac{1}{m} = \frac{2}{a} \cdot \text{Now } \frac{a}{2m} (1 + mx) \left(1 + \frac{m}{x} \right) = \frac{a}{2m} \left\{ 1 + m \left(x + \frac{1}{x} \right) + m^2 \right\}$$

$$= \frac{a}{2} \left(\frac{1}{m} + m \right) + \frac{a}{2} \left(x + \frac{1}{x} \right) = 1 + \sqrt{2}a$$

8. Solve
$$\sqrt{x} \left(9^{\sqrt{x^2 - 3}} - 3^{\sqrt{x^2 - 3}} \right) = 3^{2\sqrt{x^2 - 3} + 1} - 3^{\sqrt{x^2 - 3} + 1} + 6\sqrt{x} - 18$$

Sol.
$$\sqrt{x} \left(9^{\sqrt{x^2 - 3}} - 3^{\sqrt{x^2 - 3}} \right) = 3^{2\sqrt{x^2 - 3} + 1} - 3^{\sqrt{x^2 - 3} + 1} + 6\sqrt{x} - 18$$

or
$$\sqrt{x} \left(3^{2\sqrt{x^2-3}} - 3^{\sqrt{x^2-3}} \right) = 3.3^{2\sqrt{x^2-3}} - 3.3^{\sqrt{x^2-3}} + 6\sqrt{x} - 18$$

or
$$3^{2\sqrt{x^2-3}} \cdot (\sqrt{x}-3) - 3^{\sqrt{x^2-3}} (\sqrt{x}-3) - 6(\sqrt{x}-3) = 0$$

or
$$(\sqrt{x}-3)(3^{2\sqrt{x^2-3}}-3^{\sqrt{x^2-3}}-6)=0$$

$$\therefore \sqrt{x} - 3 = 0$$

or
$$x = 9$$

or
$$3^{2\sqrt{x^2-3}} - 3^{\sqrt{x^2-3}} - 6 = 0$$

or
$$\left(3^{\sqrt{x^2-3}}-3\right)\left(3^{\sqrt{x^2-3}}+2\right)=0$$

$$\therefore 3^{\sqrt{x^2-3}}-3=0$$

or
$$3^{\sqrt{x^2-3}} = 3$$

or,
$$\sqrt{x^2 - 3} = 1$$
 or $x^2 - 3 = 1$

or
$$x^2 - 3 = 1$$

or
$$v^2 - 4$$

$$\therefore$$
 $x = 2$ (Taking +ve value only)

Again $3^{\sqrt{x^2-3}} = -2$. (This gives the value of x as imaginary and hence rejected)

$$\therefore$$
 The required solution is $x = 9$ and $x = 2$

9. Solve for
$$x: (5+2\sqrt{6})^{x^2-5} + (5-2\sqrt{6})^{x^2-5} = 10$$

Sol.
$$(5+2\sqrt{6})^{x^2-5} + (5-2\sqrt{6})^{x^2-5} = 10$$

or
$$\left(5 + 2\sqrt{6}\right)^{x^2 - 5} + \left[\frac{\left(5 + 2\sqrt{6}\right)\left(5 - 2\sqrt{6}\right)}{5 + 2\sqrt{6}}\right]^{x^2 - 5} = 10$$
 or $\left(5 + 2\sqrt{6}\right)^{x^2 - 5} + \left[\frac{1}{5 + 2\sqrt{6}}\right]^{x^2 - 5} = 10$

or
$$\left(5 + 2\sqrt{6}\right)^{x^2 - 5} + \frac{1}{\left(5 + 2\sqrt{6}\right)^{x^2 - 5}} = 10$$
 ... (1) Putting, $\left(5 + 2\sqrt{6}\right)^{x^2 - 5} = a$... (2)

we have
$$a + \frac{1}{a} = 10$$
, or $a^2 - 10a + 1 = 0$

$$\therefore a = \frac{-(10) \pm \sqrt{(-10)^2 - 4.1.1}}{2.1} = \frac{10 \pm \sqrt{96}}{2} = \frac{10 \pm 4\sqrt{6}}{2}$$

$$=5\pm2\sqrt{6}=(5+2\sqrt{6}), (5-2\sqrt{6})$$

Putting $a = 5 + 2\sqrt{6}$ in (2) we have, $(5 + 2\sqrt{6})^{x^2 - 5} = 5 + 2\sqrt{6}$

or
$$x^2 - 5 = 1$$

or
$$x^2 = 6$$
.

or
$$x^2 = 6$$
, or $x = \pm \sqrt{6}$

Again, putting $a = 5 - 2\sqrt{6}$ in (2), we get

$$(5+2\sqrt{6})^{x^2-5} = 5-2\sqrt{6} = \frac{1}{5+2\sqrt{6}} = (5+2\sqrt{6})^{-1}$$

$$\therefore x^2 - 5 = -1$$

or
$$r^2$$

or
$$x^2 = 4$$
 or $x = \pm 2$

Sol.
$$\frac{\sqrt{6}}{\sqrt{2} + \sqrt{3}} + \frac{3\sqrt{2}}{\sqrt{3} + \sqrt{6}} - \frac{4\sqrt{3}}{\sqrt{6} + \sqrt{2}} + \sqrt{-\sqrt{3} + \sqrt{3} + 8\sqrt{7} + 4\sqrt{3}}$$

$$= \frac{\sqrt{6}(\sqrt{3} - \sqrt{2})}{1} + \frac{3\sqrt{2}(\sqrt{6} - \sqrt{3})}{6 - 3} - \frac{4\sqrt{3}(\sqrt{6} - \sqrt{2})}{6 - 2} + \sqrt{-\sqrt{3} + \sqrt{3} + 8\sqrt{(2 + \sqrt{3})^2}}$$

$$= (3\sqrt{2} - 2\sqrt{3}) + (2\sqrt{3} - \sqrt{6}) - (3\sqrt{2} - \sqrt{6}) + \sqrt{-\sqrt{3} + \sqrt{3} + 16 + 8\sqrt{3}}$$

$$= \sqrt{-\sqrt{3} + \sqrt{(4 + \sqrt{3})^2}} = \sqrt{-\sqrt{3} + 4 + \sqrt{3}} = 2, \text{ which is a rational number.}$$
Its simplest value is 2

11. If
$$x = \frac{4\sqrt{15}}{\sqrt{5} + \sqrt{3}}$$
 show that $\frac{x + \sqrt{20}}{x - \sqrt{20}} + \frac{x + \sqrt{12}}{x - \sqrt{12}} = 2$

$$\therefore x = \frac{2 \cdot 2 \cdot \sqrt{3} \cdot \sqrt{5}}{\sqrt{5} + \sqrt{3}} = \frac{\sqrt{20} \cdot 2\sqrt{3}}{\sqrt{5} + \sqrt{3}} \qquad \text{or, } \frac{x}{\sqrt{20}} = \frac{2\sqrt{3}}{\sqrt{5} + \sqrt{3}}$$

Now, comp.-div. we have
$$\frac{x + \sqrt{20}}{x - \sqrt{20}} = \frac{\sqrt{5} + 3\sqrt{3}}{\sqrt{3} - \sqrt{5}}$$
 ...(1)

Again
$$\frac{x}{\sqrt{12}} = \frac{2\sqrt{5}}{\sqrt{5} + \sqrt{3}}$$
, By comp.-div. we have $\frac{x + \sqrt{12}}{x - \sqrt{12}} = \frac{3\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}$...(2)

Adding equation (1) and (2) we get,

$$\frac{x + \sqrt{20}}{x - \sqrt{20}} + \frac{x + \sqrt{12}}{x - \sqrt{12}} = \frac{\sqrt{5} + 3\sqrt{3}}{\sqrt{3} - \sqrt{5}} - \frac{3\sqrt{5} + \sqrt{3}}{\sqrt{3} - \sqrt{5}} = \frac{2\sqrt{3} - 2\sqrt{5}}{\sqrt{3} - \sqrt{5}} = 2$$

12. Find the square root $a + b + \sqrt{2ab + b^2}$

Sol. Suppose,
$$\sqrt{(a+b) + \sqrt{2ab + b^2}} = \sqrt{x} + \sqrt{y}$$

Squaring we have, $a+b+\sqrt{2ab+b^2}=x+y+2\sqrt{xy}$

$$\therefore x + y = a + b \qquad \cdots (1) \qquad \text{and} \qquad 2\sqrt{xy} = \sqrt{2ab + b^2}$$

$$(x+y)^2 = (a+b)^2$$
 and $4xy = 2ab + b^2$

Now,
$$(x-y)^2 = (x+y)^2 - 4xy = (a+b)^2 - 2ab - b^2 = a^2$$

$$\therefore x - y = \pm a \qquad \cdots (2) \text{ Solving (1) and (2) we have}$$

$$x = a + \frac{b}{2} = \frac{2a + b}{2} \text{ and } y = \frac{b}{2} \qquad \text{or, } x = \frac{b}{2} \text{ and } y = \frac{2a + b}{2}$$

$$\therefore$$
 The required square root $=\pm\left(\sqrt{\frac{2a+b}{2}}+\sqrt{\frac{b}{2}}\right)$

13. Find the square root of $\frac{6+2\sqrt{3}}{33-19\sqrt{3}}$

Sol.
$$33-19\sqrt{3}=\sqrt{3}\left(11\sqrt{3}-19\right)$$

Now
$$\frac{\left(6+2\sqrt{3}\right)\left(11\sqrt{3}+19\right)}{\sqrt{3}\left(11\sqrt{3}-19\right)\left(11\sqrt{3}+19\right)} = \frac{66\sqrt{3}+114+66+38\sqrt{3}}{\sqrt{3}\left(363-361\right)}$$

$$= \frac{180 + 104\sqrt{3}}{\sqrt{3} \times 2} = 52 + 30\sqrt{3} = 25 + 27 + 2 \cdot 5 \cdot 3\sqrt{3} = \left(5 + 3\sqrt{3}\right)^{2}$$

- \therefore Required square root $=\pm(5+3\sqrt{3})$
- **14.** Find the value of $(2x^4 8x^3 5x^2 + 26x 28)$ when $x = 1 + \sqrt{2} + \sqrt{3}$

Sol.
$$(x-1)^2 = (\sqrt{3} + \sqrt{2})^2$$
 or, $x^2 - 2x + 1 = 5 + 2\sqrt{6}$ or $x^2 - 2x - 4 = 2\sqrt{6}$... (1)

Again by squaring we get, $x^4 + 4x^2 + 16 - 4x^3 - 8x^2 + 16x = 24$

or
$$2x^4 - 8x^3 - 8x^2 + 32x = 16$$

or
$$2x^4 - 8x^3 - 5x^2 + 26x - 28 = 3x^2 - 6x - 12 = 3(x^2 - 2x - 4) = 3 \times 2\sqrt{6} = 6\sqrt{6}$$

15. Find the value of $x (a+x)^{\frac{2}{3}} + 2(a-x)^{\frac{2}{3}} = 3(a^2-x^2)^{\frac{1}{3}}$

Sol.
$$(a+x)^{\frac{2}{3}} + 2(a-x)^{\frac{2}{3}} = 3(a+x)^{\frac{1}{3}}(a-x)^{\frac{1}{3}}$$

Let
$$(a+x)^{\frac{1}{3}} = p$$
 and $(a-x)^{\frac{1}{3}} = q$

$$\therefore$$
 The above equation is $p^2 - 3pq + 2q^2 = 0$ or, $(p-2q)(p-q) = 0$

or,
$$p = 2q$$
 or, $(a+x)^{\frac{1}{3}} = 2(a-x)^{\frac{1}{3}}$

or,
$$a+x=8(a-x)$$
 or, $x = \frac{7a}{9}$ when $p = q$, $x = 0$

 \therefore The required solution of the above equation is x = 0, $\frac{7a}{9}$

♥ Indices

If a certain non-zero real or imaginary number a is multiplied m (positive integers) times in succession then the continued product so obtained is called the mth power of a and is written as a^m (read as, a to the power m). a is called the base $a \neq 0$ and m is called the index or exponent of a^m

For example, $x^6 = x \cdot x \cdot x \cdot x \cdot x \cdot x$

Laws of Indices

If a and b are two non-zero real numbers and m, n are positive integers then

(i)
$$a^m \cdot a^n = a^{m+n}$$

(ii) (a)
$$a^m \div a^n = a^{m-n}$$
 (where $m > n$)

(b)
$$a^m \div a^n = \frac{1}{a^{n-m}}$$
, (where $m < n$)

(iii)
$$\left(a^{m}\right)^{n} = a^{mn} = \left(a^{n}\right)^{m}$$

(iv)
$$a^0 = 1$$
, $a^{-1} = \frac{1}{a}$, $a^{-m} = \frac{1}{a^m}$, $a \ne 0$

(v)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

(vi)
$$(ab)^m = a^m \cdot b^m$$

(vii)
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \left[b \neq 0\right]$$

(viii) If
$$a^m = b^m$$
 then $a = b$ when $m \neq 0$

(ix) If
$$a^m = a^n$$
 then $m = n(a \neq 0, 1, \pm \infty)$

- (x) If a and b are two real numbers such that $a^n = b$, then a is called nth root of b.
 - (a) If b > 0, then there exists a unique positive *n*th root of b.
 - (b) If b < 0 and n is odd, then there is no positive nth root of a, but a has a unique negative nth root.
 - (c) If a < 0 and n is even, then there does not exist any real number b such that $b^n = a$.

(xi)
$$m < n \Rightarrow \begin{cases} a^m < a^n, & \text{if } a > 1 \\ a^m > a^n, & \text{if } 0 < a < 1 \end{cases}$$

Note: 0^0 = undefined.

$$\mathfrak{P} 1^4 = 1^5 \text{ but } 4 \neq 5.$$

$$0^5 = 0^7 \text{ but } 5 \neq 7$$

$$(-1)^3 = (-1)^7$$
 but $3 \neq 7$

The result $a^m b^m = (ab)^m$, is not always true.

Concept Illustrator

1. Simplify
$$4^{\frac{1}{3}} \times \left[2^{\frac{1}{3}} \times 3^{\frac{1}{2}} \right]^7 \div 9^{\frac{1}{4}}$$

Given expression
$$= (2^2)^{\frac{1}{3}} \times (2^{\frac{1}{3}})^7 \times (3^{\frac{1}{2}})^7 \div (3^2)^{\frac{1}{4}}$$

 $= 2^{\frac{2}{3}} \times 2^{\frac{7}{3}} \times 3^{\frac{7}{2}} \div 3^{\frac{1}{2}} = 2^{\frac{2}{3} + \frac{7}{3}} \times 3^{\frac{7}{2} - \frac{1}{2}}$
 $= 2^{\frac{9}{3}} \times 3^{\frac{6}{2}} = 2^3 \times 3^3 = 8 \times 27 = 216$

Number System CBSE Std. IX MATHEMATICS

- 2. Simplify $\left\{ \frac{25^{m+\frac{1}{4}} \cdot \sqrt{5.5^m}}{5 \cdot \sqrt{5^{-m}}} \right\}^{\frac{1}{m}}$
- Sol. Given expression = $\left\{ \frac{\left(5^2\right)^{m+\frac{1}{4}} \cdot \left(5^1 \cdot 5^m\right)^{\frac{1}{2}}}{5 \cdot \left(5^{-m}\right)^{\frac{1}{2}}} \right\}^{\frac{1}{m}}$

$$= \left\{ \frac{5^{2m+\frac{1}{2}} \cdot \left(5^{1+m}\right)^{\frac{1}{2}}}{5^{1} \cdot 5^{-\frac{m}{2}}} \right\}^{\frac{1}{m}} = \left\{ \frac{5^{2m+\frac{1}{2}} \cdot 5^{\frac{1+m}{2}}}{5^{1-\frac{m}{2}}} \right\}^{\frac{1}{m}} = \left\{ 5^{2m+\frac{1}{2} \cdot \frac{1+m}{2} - 1 + \frac{m}{2}} \right\}^{\frac{1}{m}} = \left(5^{3m}\right)^{\frac{1}{m}}$$

$$=5^{3m\times\frac{1}{m}}=5^3=125$$

- 3. Simplify $\left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \times \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} \times \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}}$
- Sol. Given expression $= (x^{b-c})^{\frac{1}{bc}} \times (x^{c-a})^{\frac{1}{ca}} \times (x^{a-b})^{\frac{1}{ab}}$

$$= x^{(b-c)\times\frac{1}{bc}}\times x^{(c-a)\times\frac{1}{ca}}\times x^{(a-b)\times\frac{1}{ab}}$$

$$= x^{\frac{b-c}{bc} + \frac{c-a}{ca} + \frac{a-b}{ab}} = x^{\frac{b}{bc} + \frac{c}{bc} + \frac{c}{ca} - \frac{a-b}{ca} + \frac{a-b}{ab}} = x^{\frac{1}{c} - \frac{1}{b} + \frac{1}{a} - \frac{1}{b} - \frac{1}{a}} = x^0 = 1$$

- **4.** If x = 0.6, then find the value of $\left[1 \left\{1 \left(1 x^5\right)^{-1}\right\}^{-1}\right]^{\frac{-2}{5}}$
- Sol. Given expression $\left[1 \left\{1 \left(1 x^5\right)^{-1}\right\}^{-1}\right]^{\frac{-2}{5}} = \left[1 \left\{1 \frac{1}{1 x^5}\right\}^{-1}\right]^{\frac{-2}{5}}$

$$= \left[1 - \left\{\frac{1 - x^5 - 1}{1 - x^5}\right\}^{-1}\right]^{\frac{-2}{5}} = \left[1 - \left\{\frac{x^5}{x^5 - 1}\right\}^{-1}\right]^{\frac{-2}{5}}$$

$$= \left[1 - \frac{x^5 - 1}{x^5}\right]^{\frac{-2}{5}} = \left[\frac{x^5 - x^5 + 1}{x^5}\right]^{\frac{-2}{5}} = \left[\frac{1}{x^5}\right]^{\frac{-2}{5}} = \left[x^{-5}\right]^{\frac{-2}{5}} = x^{-5 \times \left(\frac{-2}{5}\right)} = x^2 = (0.6)^2 = 0.36$$

5. If $a^x = m$, $a^y = n$ and $a^2 = (m^y n^x)^z$ show that, xyz = 1

Sol.
$$\Rightarrow :: a^x = m$$

$$\therefore (a^x)^y = m^y \qquad \text{or, } a^{xy} = m^y$$

or,
$$a^{xy} = m^y$$

Again,
$$a^y = n$$

Again,
$$a^y = n$$
 $\therefore (a^y)^x = n^x$ or, $a^{xy} = n^x$

or,
$$a^{xy} = n^x$$

Now
$$\left(m^y n^x\right)^z = a^2$$

Now
$$(m^y n^x)^z = a^2$$
 or, $(a^{xy} \cdot a^{xy})^z = a^2$

or,
$$(a^{xy+xy})^z = a^2$$
 or, $(a^{2xy})^z = a^2$ or, $a^{2xyz} = a^2$

or,
$$(a^{2xy})^z = a$$

or,
$$a^{2xyz} = a^2$$

$$\therefore 2xyz = 2$$

or,
$$xyz = 1$$
 (Proved)

6. If
$$\left(a^{n^2}\right)^n = \left(a^{2^n}\right)^2$$
 show that, $\sqrt[n+1]{n^3} = 2$

Sol.
$$\left(a^{n^2}\right)^n = \left(a^{2^n}\right)^2$$

or,
$$a^{n^2 \cdot n} = a^{2^n \cdot 2}$$

$$n^2 \cdot n = 2^n \cdot 2^1$$
 or, $n^3 = 2^{n+1}$

or,
$$n^3 - 2^{n+1}$$

$$\therefore \sqrt[n+1]{n^3} = 2 \text{ (Proved)}$$

7. If
$$\left(\frac{y}{z}\right)^a \left(\frac{z}{x}\right)^b \cdot \left(\frac{x}{y}\right)^c = 1$$
. Show $\left(\frac{y}{z}\right)^{\frac{1}{b-c}} = \left(\frac{z}{x}\right)^{\frac{1}{c-a}} = \left(\frac{x}{y}\right)^{\frac{1}{a-b}}$

Sol.
$$\left(\frac{y}{z}\right)^a \left(\frac{z}{x}\right)^a$$

$$\left(\frac{y}{z}\right)^a \left(\frac{z}{x}\right)^b \cdot \left(\frac{x}{y}\right)^c = 1$$

Sol.
$$\left(\frac{y}{z}\right)^a \left(\frac{z}{x}\right)^b \cdot \left(\frac{x}{y}\right)^c = 1$$
 or, $\left(\frac{y}{z}\right)^a \left(\frac{z}{x}\right)^b \cdot \left(\frac{x}{y}\right)^c = \left(\frac{y}{z} \cdot \frac{z}{x} \cdot \frac{x}{y}\right)^a$

$$\left[\because (1)^a = 1\right]$$

or,
$$\left(\frac{z}{x}\right)^b \cdot \left(\frac{x}{y}\right)^c = \left(\frac{z}{x}\right)^a \cdot \left(\frac{x}{y}\right)^a$$

or,
$$\left(\frac{x}{y}\right)^{c-a} = \left(\frac{z}{x}\right)^{a-b}$$

or
$$\left(\frac{x}{y}\right)^{\frac{1}{a-b}} = \left(\frac{z}{x}\right)^{\frac{1}{c-a}} \cdots (1)$$

Similarly,
$$\left(\frac{y}{z}\right)^a \cdot \left(\frac{z}{x}\right)^b \cdot \left(\frac{x}{y}\right)^c = \left(\frac{y}{z} \cdot \frac{z}{x} \cdot \frac{x}{y}\right)^b$$

i.e.
$$\left(\frac{x}{y}\right)^{b-c} = \left(\frac{y}{z}\right)^{a-c}$$

i.e.
$$\left(\frac{x}{y}\right)^{b-c} = \left(\frac{y}{z}\right)^{a-b}$$
 or, $\left(\frac{x}{y}\right)^{\frac{1}{a-b}} = \left(\frac{y}{z}\right)^{\frac{1}{b-c}}$

From (1) and (2)
$$\left(\frac{y}{z}\right)^{\frac{1}{b-c}} = \left(\frac{z}{x}\right)^{\frac{1}{c-a}} = \left(\frac{x}{y}\right)^{\frac{1}{a-b}}$$

8. If
$$(111.1)^a = (11.11)^b = (1.111)^c$$
, show $\frac{b}{a} + \frac{b}{c} = 2$

Sol. Let
$$(111.1)^a = (11.11)^b = (1.111)^c = k$$

$$\therefore 111.1 = k^{\frac{1}{a}}, 11.11 = k^{\frac{1}{b}}, 1.111 = k^{\frac{1}{c}}$$

Now,
$$k^{\frac{1}{a}} \cdot k^{\frac{1}{c}} = 111.1 \times 1.111 = (11.11)^2 = k^{\frac{2}{b}}$$

or,
$$k^{\frac{1}{a} + \frac{1}{c}} = k^{\frac{2}{b}}$$

$$\therefore \frac{1}{a} + \frac{1}{c} = \frac{2}{b}$$

9. If
$$x = 3 + 3^{\frac{2}{3}} + 3^{\frac{1}{3}}$$
, find the value of $x^3 - 9x^2 + 18x - 12$

Sol.
$$x = 3 + 3^{\frac{2}{3}} + 3^{\frac{1}{3}}$$
 $\therefore x - 3 = 3^{\frac{2}{3}} + 3^{\frac{1}{3}}$

or,
$$(x-3)^3 = \left(3^{\frac{2}{3}} + 3^{\frac{1}{3}}\right)^3$$
 [cubing both sides]

or,
$$x^3 - 3^3 - 3 \cdot x \cdot 3(x - 3) = \left(3^{\frac{2}{3}}\right)^3 + \left(3^{\frac{1}{3}}\right)^3 + 3 \cdot 3^{\frac{2}{3}} \cdot 3^{\frac{1}{3}} \left(3^{\frac{2}{3}} + 3^{\frac{1}{3}}\right)$$

or,
$$x^3 - 27 - 9x^2 + 27x = 3^2 + 3 + 3^{1 + \frac{2}{3} + \frac{1}{3}} (x - 3)$$

$$\left[\because 3^{\frac{2}{3}} + 3^{\frac{1}{3}} = x - 3 \right]$$

or,
$$x^3 - 9x^2 + 27x - 27 = 12 + 9(x - 3) = 9x - 15$$
 or, $x^3 - 9x^2 + 27x - 9x - 27 + 15 = 0$

or,
$$x^3 - 9x^2 + 18x - 12 = 0$$

$$\therefore$$
 the value of the given expression $= 0$

10. If
$$(7.77)^x = (0.777)^y = 1000$$
, then show that, $\frac{1}{x} - \frac{1}{y} = \frac{1}{3}$

Sol. Given that:
$$(7.77)^x = (0.777)^y = 1000 = 10^3$$

$$\therefore (7.77)^x = 10^3 \Rightarrow 7.77 = 10^{\frac{3}{x}}$$

Again,
$$(0.777)^y = 10^3 \Rightarrow 0.777 = 10^{\frac{3}{y}}$$

Now from (1) & (2), we have
$$\frac{7.77}{0.777} = \frac{10^{\frac{3}{x}}}{10^{\frac{3}{y}}} = 10^{\frac{3}{x} - \frac{3}{y}} \Rightarrow 10^{\frac{3}{x} - \frac{3}{y}} = 10^{1}$$

$$\Rightarrow \frac{3}{x} - \frac{3}{y} = 1 \Rightarrow \frac{1}{x} - \frac{1}{y} = \frac{1}{3}$$
 (Proved)

11. If $2^n = 4^y = 8^z$ and $\frac{1}{2x} + \frac{1}{4y} + \frac{1}{8z} = \frac{22}{7}$

Sol. If $2^x = 4^y = 8^z \Rightarrow 2^x = 2^{2y} = 2^{3z} \Rightarrow x = 2y = 3z$ then find the values of x, y, z.

$$\therefore \quad \frac{x}{6} = \frac{y}{3} = \frac{z}{2} = k \text{ (say)}, \qquad \therefore \quad x = 6k, \quad y = 3k, \quad z = 2k$$

Again,
$$\frac{1}{2x} + \frac{1}{4y} + \frac{1}{8z} = \frac{22}{7} \Rightarrow \frac{1}{2 \cdot 6k} + \frac{1}{4 \cdot 3k} + \frac{1}{8 \cdot 2k} = \frac{22}{7}$$

$$\Rightarrow \frac{4+4+3}{48k} = \frac{22}{7} \Rightarrow \frac{11}{48k} = \frac{22}{7} \Rightarrow k = \frac{77}{22 \times 48} = \frac{7}{96}$$

$$\therefore x = 6k = \frac{6 \times 7}{96} = \frac{7}{16}, \ y = 3k = \frac{3 \times 7}{96} = \frac{7}{32}, \ z = 2k = \frac{2 \times 7}{96} = \frac{7}{48}$$

13. Prove that
$$(x+y)(x^2+y^2)(x^4+y^4)\cdots(x^{2^{n-1}}+y^{2^{n-1}})=\frac{x^{2^n}-y^{2^n}}{x-y}$$

L.H.S =
$$\frac{(x-y)(x+y)(x^2+y^2)(x^4+y^4)\cdots(x^{2^{n-1}}+y^{2^{n-1}})}{(x^2+y^2)(x^2+y^2)}$$

$$= \frac{(x^2 - y^2)(x^2 + y^2)(x^4 + y^4) \cdots (x^{2^{n-1}} + y^{2^{n-1}})}{x - y}$$

Thus, multiplying upto the last term, we get

L.H.S. =
$$\frac{\left(x^{2^{n-1}} - y^{2^{n-1}}\right)\left(x^{2^{n-1}} + y^{2^{n-1}}\right)}{x - y} = \frac{\left(x^{2^{n-1}}\right)^2 - \left(y^{2^{n-1}}\right)^2}{x - y} = \frac{x^{2^n} - y^{2^n}}{x - y}$$

14. If pqr = 1 show that,

$$\frac{1}{1+p+q^{-1}} + \frac{1}{1+q+r^{-1}} + \frac{1}{1+r+p^{-1}} = 1$$

Sol. We have,
$$\frac{1}{1+p+q^{-1}} = \frac{p^{-1}}{p^{-1}(1+p+q^{-1})} = \frac{p^{-1}}{p^{-1}+p^0+\frac{1}{pq}}$$

$$= \frac{p^{-1}}{p^{-1} + 1 + r} \qquad \left[\because pqr = 1 \ \therefore \frac{1}{pq} = r \right]$$
$$= \frac{p^{-1}}{1 + r + p^{-1}}$$

Again,
$$\frac{1}{1+q+r^{-1}} = \frac{r}{r(1+q+r^{-1})} = \frac{r}{r+qr+r^{0}}$$
$$= \frac{r}{r+p^{-1}+1} \qquad \left[\because pqr = 1 \therefore qr = \frac{1}{p} = p^{-1} \right]$$

$$=\frac{r}{1+r+p^{-1}}$$

$$\therefore \text{ L.H.S.} = \frac{p^{-1}}{1+r+p^{-1}} + \frac{r}{1+r+p^{-1}} + \frac{1}{1+r+p^{-1}} = \frac{p^{-1}+r+1}{1+r+p^{-1}} = 1 \text{ (Proved)}$$

15. If $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c}$ then prove that $\frac{1}{a^{2m+1}} + \frac{1}{b^{2m+1}} + \frac{1}{c^{2m+1}} = \frac{1}{a^{2m+1} + b^{2m+1} + c^{2m+1}}$

Sol.
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{a+b+c} \Rightarrow (a+b)(b+c)(c+a) = 0$$
 (prove) : at least one factor is zero,

That is a
$$a = -b$$
 or $b = -c$ or $c = -a$ $\therefore a^{2m+1} = -b^{2m+1}$ or $b^{2m+1} = -c^{2m+1}$

$$\frac{1}{a^{2m+1}} + \frac{1}{b^{2m+1}} + \frac{1}{c^{2m+1}}$$

$$=\frac{1}{a^{2m+1}}-\frac{1}{a^{2m+1}}+\frac{1}{c^{2m+1}}=\frac{1}{0+c^{2m+1}}=\frac{1}{a^{2m+1}+b^{2m+1}+c^{2m+1}}$$

Try Your Self

NCERT BOARD

- 1. Find six rational numbers between 3 and 4.
- 2. Find five rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$
- 3. State whether the following statements are true or false. Give reasons for your answers.
 - (i) Every natural number is a whole number.
 - (ii) Every integer is a whole number.
 - (iii) Every rational number is a whole number.
- 4. Locate $\sqrt{3}$ on the number line
- 5. State whether the following statements are true or false. Justify your answers.
 - (i) Every irrational number is a real number.
 - (ii) Every point on the number line is of the form \sqrt{m} where m is a natural number.
 - (iii) Every real number is an irrational number.
- 6. Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.
- 7. Show how $\sqrt{5}$ can be represented on the number line
- 8. Write the following in decimal form and say what kind of decimal expansion each has:
 - (i) $\frac{36}{100}$
- (ii) $\frac{1}{11}$
- (iii) $4\frac{1}{9}$

- (iv) $\frac{3}{13}$
- (v) $\frac{2}{11}$ (vi) $\frac{329}{400}$
- 9. You know that $\frac{1}{7} = 0.\overline{142857}$. Can you predict what the decimal expansions of $\frac{2}{7}$, $\frac{3}{7}$, $\frac{4}{7}$, $\frac{5}{7}$, $\frac{6}{7}$ are without actually doing the long division? If so, how?

- 10. Express the following in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$
 - (i) $0.\overline{6}$
- (ii) $0.4\overline{7}$
- (iii) 0.001
- 11. Express 0.99999 ... in the form $\frac{p}{q}$. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.
- 12. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$? Perform the division to check your answer.
- 13. Look at several examples of rational numbers in the form $\frac{p}{q}(q \neq 0)$, where p and q are integers with no common factors other than l and having terminating decimal representations (expansions). Can you guess what property q must satisfy?
- 14. Write three numbers whose decimal expansions are non-terminating non-recurring.
- 15. Find three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$.
- 16. Classify the following numbers as rational or irrational:
 - (i) $\sqrt{23}$
- (ii) $\sqrt{225}$
- (iii) 0.3796

- (iv) 7.478478...
- (v) 1.101001000100001.....
- 17. Classify the following numbers as rational or irrational:

 - (i) $2-\sqrt{5}$ (ii) $(3+\sqrt{23})-\sqrt{23}$ (iii) $\frac{2\sqrt{7}}{7\sqrt{7}}$

- (iv) $\frac{1}{\sqrt{2}}$
- 18. Simplify each of the following expressions:
 - (i) $(3+\sqrt{3})(2+\sqrt{2})$

(ii) $(3+\sqrt{3})(3-\sqrt{3})$

(iii) $\left(\sqrt{5} + \sqrt{2}\right)^2$

- (iv) $(\sqrt{5} \sqrt{2})(\sqrt{5} + \sqrt{2})$
- 19. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d) That is $\pi = \frac{c}{d}$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
- **20.** Rationalise the denominators of the following :
 - (i) $\frac{1}{\sqrt{7}}$
- (ii) $\frac{1}{\sqrt{7} \sqrt{6}}$ (iii) $\frac{1}{\sqrt{5} + \sqrt{2}}$ (iv) $\frac{1}{\sqrt{7} 2}$

NUMBER SYSTEM

Fill in the Blanks

1	Rational	numbers :	and irration	al numbers	s together	constitute a set	$\circ f$	
1.	Tanonai	inumocis .	and manor	iai mumoci,	o together	constitute a set	O1	

2. Simplified form of
$$(2\sqrt{5} + 3\sqrt{2})^2$$
 is .

2. Simplified form of
$$(2\sqrt{5} + 3\sqrt{2})^2$$
 is _____.

3. After rationalising the denominator of $\frac{\sqrt{3} + 1}{2\sqrt{2} - \sqrt{3}}$ we get _____.

5.
$$2^{-4}(2\sqrt{3})^2 =$$
_____.

6. If
$$x = \frac{\sqrt{2+1}}{\sqrt{2}-1}$$
, then $\frac{1}{x^2} = \underline{\hspace{1cm}}$.

7. When
$$\sqrt{x^{-2}y^3}$$
 is written in exponential form, it is equal to _____.

9. The value of
$$\frac{2}{\sqrt{3}}$$
 approximately upto 3 decimal places where $\sqrt{3} = 1.732$ ______.

$$10. \left(\frac{\sqrt{3}}{8}\right) \div \left(\frac{\sqrt{3}}{8}\right)^5 = \underline{\qquad}.$$

Match The Followings

Part A	Part B
The numbers $7\sqrt{3}, \frac{7}{\sqrt{5}}, \pi - 2$ are	$\frac{\sqrt{5}+\sqrt{3}}{2}$
$\left(7+3\sqrt{2}\right)\left(7-3\sqrt{2}\right) =$	terminating
On number line, negative real numbers lie on the	$a^{2-}b$
This is the rationalised form of $\frac{1}{\sqrt{5}-\sqrt{3}}$	irrational numbers
125 ^{-1/3} is same as this rational number.	3
Decimal expansion of $4\frac{1}{8}$ is	$\frac{1}{28^3}$
Product of $2^{1/5}$ and $16^{1/5}$ =	31

This is the value of x which satisfies the equation $\left(\frac{a}{b}\right)^{x-1} = \left(\frac{b}{a}\right)^{x-5}$	2
28^2 . 28^{-5} is same as	left side of zero
$(a+\sqrt{b})(a-\sqrt{b})$ is equal to	$\frac{1}{5}$

True False

- 1. $\left(\sqrt{2}+2\right)^2$ is a rational number.
- 2. Addition, subtraction, multiplication and division of two irrational numbers may or may be irrational.
- 3. The number 0.318456318456318456.... is an irrational number.
- 4. The values of a and b in $\frac{3+\sqrt{7}}{3-\sqrt{7}} = a+\sqrt{7}$ are 8 and 3 respectively.
- 5. π and e are irrational numbers.
- 6. To rationalise $\frac{1}{3-\sqrt{7}}$, we multiply this by $\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$
- 7. The decimal expansion of an irrational number is neither a terminating nor repeating decimal.
- 8. 4.6734467344... is a rational number.
- 9. Irrational numbers cannot be represented on a number line.

$$10. \ \frac{a^m}{b^m} = (ab)^m$$

Short Answers

- 1. Represent 14.3222.... as a rational number.
- 2. Find the values of a and b in $\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a+b\sqrt{3}$.
- 3. Express 0.545454... in the form of $\frac{p}{q}$.
- 4. Is $(\sqrt{5} + \sqrt{7})$ an irrational number? If yes, then prove.

MCQS

1. Which of the following value of x is an irrational number?

A.
$$x^2 = 0.81$$

B.
$$x^2 = \frac{15}{6}$$

C.
$$x^2 = 0.0064$$

D.
$$x^2 = 9$$

- 2. What is the cube root of rational number -5_{15} ?
- A. -625
- B. -25
- C. -125
- D. -3,125
- 3. To rationalise the denominator of the fraction $\frac{\sqrt{3} + 4\sqrt{2}}{4\sqrt{3} \sqrt{2}}$, we will multiply and divide it by which of the following rationalising factors?
- A. $4\sqrt{3} \sqrt{2}$
- B. $-4\sqrt{3} + \sqrt{2}$
- C. $\sqrt{3}-\sqrt{2}$
- D. $4\sqrt{3} + \sqrt{2}$
- 4. Which of the following are an approximate equivalent rational value of an irrational number π ?
- A. $\frac{11}{14}$
- B. $\frac{20}{14}$
- c. $\frac{44}{14}$
- D. $\frac{35}{14}$